
324

Efficient Combined Index Structure for K-Nearest Neighbours Keyword
Search on Spatial Database

Su Nandar Aung, Myint Myint Sein
University of Computer Studies, Yangon

sunandaraung@ucsy.edu.mm, myint@ucsy.edu.mm

Abstract

Spatial keyword search on spatial database has
been well studied for years due to its importance to
commercial search engines.Specially, a spatial
keyword query takes a user location and user-supplied
keywords as arguments and returns object that is
nearest k objects from user current location and
textually relevant to the user required keyword. Geo-
textual index play an important role in spatial keyword
querying. This paper proposes the efficient combined
index structure for K-Nearest Neighbours Keyword
Search on Spatial Database. That combine K-d tree
and inverted file for nearest neighbor keyword query
which is based on the most spatial and textual
relevance to query point and required keyword. It can
search required k results with minimum IO costs and
CPU costs. The k-results are ranked according to the
distance or keyword. The own dataset is created for
Yangon (Myanmar) region which contains latitude,
longitude, name, description and category type of each
object.

Keywords: Combination Scheme, Spatial Keyword
Queries, Problem Statement, Proposed Index, K-NN
Keyword Search Algorithm.

1. Introduction

Spatial database systems manage large
collections of spatial data, which apart from spatial
attributes contain non spatial information. Spatial data
are data that have a location (spatial) and mainly
required for Geographic Information Systems (GIS)
whose information is related to geographic locations.
GIS model supports spatial data types, such as point,
line and polygon. A geospatial collections increase in
size, the demand of efficient processing of spatial
queries with text constraints becomes more prevalent.

An increasing number of applications require the
efficient execution of nearest neighbor (NN) queries
constrained by the properties of the spatial objects. Due
to the popularity of keyword search, particularly on the
Internet, many of these applications allow the user to
provide a list of keywords that the spatial objects
should contain, in their name or description or

categories. Spatial keyword search is an important tool
in exploring useful information from a spatial database
and has been studied for years. The query consists of a
spatial location, a set of keywords and a parameter k
and the answer is a list of objects ranked according to a
combination of their distance to the query point and the
relevance of their text description to the query
keyword. The spatial relevance is measured by the
distance between the location associated with the
candidate document to the query location, and the
textual relevance is said to be textually relevant to a
query if object contains queried keywords. [1]

During the design of a spatial index, issues that
need to be minimized are:

(a) The area of covering rectangles maintained in
internal nodes,

(b) The overlaps between covering rectangles for
indexes developed based on the overlapping
native space indexing approach,

(c) The number of objects being duplicated for
indexes developed based on the non-
overlapping native space indexing approach

(d) The directory size and its height.

Many index structures that have been proposed
in recent years mainly use R-tree and then combine
with inverted file, namely the families of IR-tree [4, 5,
6, 7, 8, 9, 10]. All use R-tree for spatial
(latitude/longitude) index and inverted file for textual
index. They all created hybrid index structure
according to the combination schemes: (1) Text first
loose combination scheme, employs the inverted as the
top-level index and then arrange the postings in each
inverted list in a spatial structure. (2) Spatial-first loose
combination scheme employs the spatial index as the
top-level index and its leaf nodes contain inverted files
or bitmaps for the text information of objects contained
in the nodes. (3) Tight combination indexcombines a
spatial and a text index tightly such that both types of
information can be used to prune the search space
simultaneously during query processing.

The construction of an efficient index structure
should take into account overlaps between nodes and
coverage of a node. Minimization of a node coverage
leads to more precise searching within the tree and
minimization of the overlap between nodes reduces the
number of paths tested in the tree during a search that

325

can reduce search time. As the data objects in the R-
tree can be overlapping and covering each other, the
search process in the R-tree might suffer from
unnecessary node visits and higher IO cost [16].
Moreover, the IR-trees suffer from high update cost.
Each node has to maintain an inverted index for all the
keywords of documents associated with this node’s
MBR. When a node is full and split into two new
nodes, all the textual information in the node has to be
re-organized [1]. As the R-tree need to reorganized, it
suffers from higher CUP costs.

This paper intends to reduce IO costs, CUP costs
and searching time for kNN keyword search.

This paper includes the following contributions:

(1) The main contribution is to create index structure
that combine K-d tree and inverted file for
efficiently process spatial keyword queries within
minimum time.

(2) Nearest neighbor keyword search algorithm is
developed using the proposed index structure to
efficiently answer Boolean kNN queries and to
explore useful and exact information that user
required.

2. Related Works

 There has been lot of interest in building
geographic information retrieval system. Spatial
Keyword search has been well studied for years due to
its importance to commercial search engines. Various
types of spatial keyword queries have been proposed.
For spatial keyword search, the index structure is
created for both spatial and textual relevance. Most
index structures [10, 5, 6, 8, 9] use R-tree and its
variants as spatial index and inverted file for text index.
They all combine both indices depending on the
combination schemes [15]. Among them [8] integrates
signature file instead of inverted file into each node of
the R-tree. Inverted file-R*tree (IF-R*) and R*-tree-
inverted file (R*-IF) [10] are two geo-textual indices
that loosely combine the R*-tree and inverted file.
Hariharan et al. R. G¨obel, A. Henrich, R. Niemann,
and D. Blank [8] proposed the KR*-tree. This paper
proposed a framework for GIR systems and focus on
indexing strategies. I. D. Felipe, V. Hristidis, and N.
Rishe [9] uses R*-tree for spatial index and inverted
file for text index. Cary et al, [5] proposed SKI that
combines and R-tree with an inverted index by the
inclusion of spatial references in posting lists. In [5]
the posting list of term contains all its term bitmaps
rather than documents. The IR tree [6] creates each
nodes of the R-tree with a summary of the text content
of the objects in the corresponding subtree. Li et al.
proposed an index structure, which is also called IR
tree that stores one integrated inverted file for all the
nodes. X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu,

A. Skovsgaard, D. Wu, and M. L. Yiu [3] proposed S2I
index structure based on R-tree and inverted file. The
objects in [3] are stored differently according to the
document frequency and infrequency of the term.
 D. Zhang, K.L. Tan, Anthony K.H. Tung [1]
proposed I3 (Integrated Inverted Index), which adopts
the Quad tree structures to hierarchically partition the
data space into cells. The basis unit of I3 is the keyword
cell, which captures the spatial locality of a keyword.
X.Cao, G.Cong, Christian S. Jensen, Jun.J. Ng,
BengC.Ooi, N.T. Phan, D. Wu [15] proposes a Web
Object Retrieval System (SWORS) that is capable of
efficiently retrieving spatial web objects that satisfy
spatial keyword queries. This system use IR tree and
inverted file for index. It supports two types of queries
that are location aware top-k text retrieval (Lkt) query
and spatial keyword group (SKG) query.

3. Problem Statement

 Let D is a spatial database that contains D=
{o1,o2,o3…..,on } such that every object o in D has
many attributes <oid, ol, od> where oid is an identifier of
an object, ol is a spatial location that contain latitude
and longitude and od is an text document of each object
for keyword querying.

A keyword query qk is a set of keywords k1, k2, k3,
…., km. The result is a set of objects ordered by the
relevance of their textual description to the query
keywords.

Boolean kNN Keyword Queries: Let kNN query
q=<qk, ql, k> be a Boolean kNN query where qk is user
required keywords w1…..wm, ql is a user current
location (latitude, longitude) and k is the number of
result objects. A query q return k objects ok from D that
are nearest neighbor of ql with the highest scores
according to the Euclidean Distance and Boolean
Model in which corresponding point contain required
keywords qk={w 1, w2,…., wm}.

4. Proposed System

 The proposed system creates hybrid geo-
textual index structure that integrates spatial index and
text index to process spatial keyword queries
efficiently. In this proposed system K-d tree loosely
combined with inverted file. K-d tree is used for spatial
queries and inverted file is used for keywords
information that is the most efficient index for text
information retrieval.For each node of K-d tree,an
inverted file is created for indexing the text
components of objects contained in the node. As K-d
trees represent a disjoint partition, the proposed system

326

can’t cause more IO costs and also K-d trees don’t
need to rebalance the textual information so the
proposed can reduce update cost (CPU Costs).

Table1. Example Dataset
id Latitude Longitude Keywords

Obj1 16.779568 96.152687
Mobile, Shopping, Mall,

Telecommunication, Electronics, Tools

Obj2 16.779533 96.15269 May, Shopping, Center, Super Market

Obj3 16.813517 96.08475 Cat, Walk, Foot, Wear

Obj4 16.779565 96.135581
NorthPoint, Shopping, Center,
Super, Market, Food, Drink

Obj5 16.881351 96.152549
Gamonpwint, Shopping, Center,

 Super, Market, Food, Drink

Obj6 16.779581 96.169647
Gamonpwint, Shopping, Center,

Super, Market, Food, Drink

Obj7 16.779568 96.152719 Asia, Shopping, Center, Super, Market

Obj8 16.830324 96.186432 Moon, Bakery, Food, Drink

Figure1. Proposed Index Structure for Dataset of
Table 1

Most geo-textual indices use the inverted file for
text indexing. An inverted file has a vocabulary of
terms, and each term is associated with an inverted file.
The frequency information is not included in the
inverted file that is developed to handle Boolean
queries.

Inverted file can be used to check the query
keywords contain or not. K-d tree structure is known as
point indexing structures as it is designed to index data
objects which are points in a multi-dimensional space.
It can be used efficiently for nearest neighbor query
and range query. This paper proposes nearest neighbor
keyword search algorithm using K-d tree and inverted
file.

Figure2. Framework for Proposed System

5. Three Types of Spatial Keyword Queries

Standard spatial keyword queries involve different
conditions on the spatial and textual aspects of places.
In spatial databases, the arguably most fundamental
queries are range queries and k nearest neighbor
queries. In text retrieval, queries may be Boolean,

requiring results to contain the query keywords, or
ranking-based, returning the k places that rank the
highest according to a text similarity function. [3]

Three types of spatial keyword queries are
receiving particular attention. The Boolean range query
q = (ρ, ψ) where ρ is a spatial region and ψ is a set of
keywords, returns all places that are located in region ρ
and that contain all the keywords in ψ. Variations of
this query may rank the qualifying places. The Boolean
kNN query q=(λ, ψ, k) takes three arguments, where λ is
a point location, ψ is as above, and k is the number of
places to return. The result consists of up to k places,
each of which contains all the keywords in ψ, ranked in
increasing spatial distance from λ. Next, the top-k
range query q = (ρ, ψ, k) where ρ, ψ, and k are as
above, returns up to k places that are located in the
query region ρ, now ranked according to their text
relevance to ψ. Finally, the top-k kNN query takes the
same arguments as the Boolean kNN query. It retrieves
k objects ranked according to a score that takes into
consideration spatial proximity and text relevance.

Among these queries, the latter two ones that
perform textual ranking are the most similar to
standard web querying, and the last one is the one that
is most interesting and novel, as it integrates the spatial
and textual aspects in the ranking.

6. K-NN Keyword Search Algorithm

Query
Using

Propose
d Index

Database

Results

Algorithm1. K-NN Keyword Search in Hybrid Index
Structure
NNKeywordSearch (T,Q)
T: kd tree;
Q: Query that contains current location Q.l, required keyword

Q.key, number of required nearest neighbours objects Q.k;
L: Arraylist;
pqResult: Priority Queue;
count ← 0;
pqResult ← NNSearch (T, Q);
while count <Q.k do
 L.add (pqResult.remove());
return L;

NNSearch (T, Q)
pq: Proirity Queue;
pqResult: Priority Queue;
Search: tuple kd tree, bounding_box, potential_distance and

tuple;
nnPoint: undefine;
minDistance: infinity (∞)
pq.add(Search (T, B_Box, 0));
whilepq.size>0 and pq.TOP(().potential_distance<minDistance

do
 T ← pq.TOP().kdtree;
B_Box ← pq.TOP ().bounding_box ;
pq.remove();
 if T≠ leaf then
 point ← T.key;
 i ← T.discr;
 distance ← DISTANCE (point.l , Q.l);
if distance<minDistance&&Q.keyword Є point.keywords
 pqResult.ADD(point);
 minDistance ← distance;
BOUNDINGBOX (left_BB,right_BB,BB,point[i])
potential_distance ←MINDISTANCE(left_BB,Q.l);If

potential_distance< distance then
 pq.ADD(Search(T.left, left_BB, potential_distance));
potential_distance← MINDISTANCE (right_BB,Q.l);
If potential_distance< distance then
 pq.ADD(Search(T.right, right_BB,potential_distance));
returnpqResult;

327

The algorithm-1 returns the closest points to a
given user’s current location according to a certain
distance function.When the algorithm explores some
points of the kd-tree, it starts computing the distance
between this points and query point and then check the
required keywords contain or not.

 In the algorithm, the procedure
ComputeBoundingBoxes(…) returns the bounding
boxes lBB and rBB for the left and the right subtrees,
respectively. The function MinimumDistance(BB; c)
returns the potential distance between any point located
inside the bounding box BB and query point. The
DISTANCE (…) procedure calculates the distance
between two points using Euclidean distance.

7. Architecture of Proposed System

Figure3. User Interface for the Proposed System

 The propose system adopts the browser-server
model for desktop and laptop computer. Figure3 shows
the user interface for the proposed system. Users can
input their queries through the web browser and the
queries are sent to the server for processing. After the
queries are processed, the results are sent back and
displayed using Google Maps in the users’ browser.
Queries are sent from the browser to the server by the
HTTP post operation.
 The browser side use Google Map API to provide
interfaces to users for generating queries and viewing
the returned spatial web objects. Users can specify the
current’s location by clicking a location in Google Map
to get the latitude and longitude of that location and
can type the required keywords. And then the required
number of objects k and the sort by type. The query is
sent to the server and then relevant k-objects are
retrieved by the server that are nearest neighbours and
contain the specified keyword. The results are sorted
by the distance or keyword and then are displayed on
Google Maps in the browser.

Figure4. User Interface for the Result

8. Experimental Results

 Figure5 shows the index construction time (second)
depending on the size of datasets. Figure6 compare the
searching time (second) depending on the number of
required keywords between using proposed index
structure and other index that combine R-tree and
inverted file. Searching time using proposed index
structure is faster than other index (R-tree and inverted
files) about 100-times in second. Figure7 shows the
searching time depending on the varying number of
objects k.

Figure 5. Index Construction Time

Figure 6. Searching Time for varying number of

keywords

328

Figure 7. Searching Time for varying number of

required objects

9. Conclusion and Further Extension

 This paper presented hybrid index structure for
range keyword query searching with minimum IO costs
and CPU costs. This index structure can avoid
searching in overlapping area. So it can reduce
searching time in overlap area. Moreover, it can’t cause
node overflow, so it doesn’t need to re-organize the
textual data and spatial data. Many Further extensions
can be considered for efficient hybrid index structure
for spatial database. As a further extension, we’ll add
an efficient spatial approximate keyword search and
Boolean keyword search within given range and
nearest neighbour and approximate keyword search in
this proposed index structure.

REFERENCES

[1] D. Zhang, K.L. Tan, Anthony K.H. Tung, “Scalable
Top-K Spatial Keyword Search”, EDBT/ICDT’13
March 18-22, 2013

[2] L. Chen, G. Cong, C. S. Jensen, and D. Wu, “Spatial
Keyword Query Processing: An Experimental

Evaluation”, in proceddings of the VLDB Endowment,
Vol.6, No.3, 2013.

[3] X. Cao, L. Chen, G. Cong, C. S. Jensen, Q. Qu, A.
Skovsgaard, D. Wu, and M. L. Yiu, “Spatial keyword
querying”, inER, pages 16–29, 2012.

[4] J. B. Rocha-Junior, O. Gkorgkas, S. Jonassen, and K.
Nørv°ag, “Efficient processing of top-k spatial keyword
queries”, in SSTD, pages 205–222, 2011.

[5] Z. Li, K. C. K. Lee, B. Zheng, W.-C. Lee, D. L. Lee, and
X. Wang, “Ir-tree: An efficient index for geographic
document search”, IEEE TKDE, 23(4):585–599, 2011.

[6] A. Cary, O. Wolfson, and N. Rishe, “Efficient and
scalable method for processing top-k spatial Boolean
queries”, inSSDBM, pages 87–95, 2010.

[7] G. Cong, C. S. Jensen, and D. Wu, “Efficient retrieval of
the top-k most relevant spatial web objects”, PVLDB,
2(1):337–348, 2009.

[8] R. G¨obel, A. Henrich, R. Niemann, and D. Blank,
(2009), “A hybrid index structure for geo-textual
searches”, in CIKM, pages 1625–1628, 2009.

[9] I. D. Felipe, V. Hristidis, and N. Rishe, “Keyword
search on spatial databases”, in ICDE, pages 656–665,
2008.

[10] R. Hariharan, B. Hore, C. Li, and S. Mehrotra, (2007),
“Processing spatial-keyword (sk) queries in geographic
information retrieval (gir) systems”, in SSDBM, page 16,
2007.

[11] Y. Zhou, X. Xie, C. Wang, Y. Gong, and W.-Y. Ma,
“Hybrid index structures for location-based web search”,
in CIKM, pages 155–162, 2005.

[12] H.M. Kakde, “Range Searching using Kd Tree”, 2005.
[13] A. Guttman, “R-trees: A dynamic index structure for

spatial searching”, in SIGMOD, pages 47–57, 1984.
[14] B.C. Ooi, R. Sacks-Davis, J.Han, “Indexing in Spatial

Databases”.
[15] X.Cao, G.Cong, Christian S. Jensen, Jun.J. Ng,

BengC.Ooi, N.T. Phan, D. Wu, “SWROS: A System for
the Efficient Retrieval of Relevant Spatial Web
Objects”.

[16] Y. Theodoridis, T. Sellis, “Optimization Issues in R-tree
Construction”, Technical Report KDBSLAB-TR-93-08.

